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For theCAGISpecial Issue

Abstract
Correct phenotypic interpretation of variants of unknown significance for cancer-associated

genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation

sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to

test and define the state of the art of genotype–phenotype interpretation. Here, we present

the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect

on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent

kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were

assessed with a variety of accuracy measures for reliability in a medical context. Different

assessment measures were combined in an overall ranking to provide more robust results. The

R scripts used for assessment are publicly available from a GitHub repository for future use in

similar assessment exercises. Despite a limited test-set size, our findings show a variety of results,

with some methods performing significantly better. Methods combining different strategies

frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine

learning method combining an empirical energy function measuring protein stability with an

evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects

can neutralize otherwise deleterious variants.
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1 INTRODUCTION

As genetic tests become routinely applied to the investigation of

disease-associated variants, relevant efforts are made by the scien-

tific community to develop computational tools for genetic variant

evaluation (Niroula & Vihinen, 2016). A number of methods present-

ing different strategies have been presented, and their application is

becoming a common routine in cancer research (Kannengiesser et al.,

2009; Miller et al., 2011). In silico predictors are generally designed

to provide a fast simplified response when compared with experimen-

tal screening protocols. However, lack of properly validated bench-

marking represents the main limiting factor hampering wider applica-

tion in a clinical scenario (Walsh, Pollastri, & Tosatto, 2016). Variants

affecting tumor-suppressor genes, such as TP53 (Liu & Bodmer, 2006),

VHL (Leonardi,Martella, Tosatto, &Murgia, 2011), andCDKN2A (Scaini

et al., 2014) are actively investigated and collected in freely accessi-

ble databases (Forbes et al., 2015; Tabaro et al., 2016; Wang et al.,

2015). However, the correct interpretation of their pathogenic signif-

icance is far from definitively addressed. One relevant issue remains

our ability to correctly predict disease-causing gene variants among

variants of unknown significance (VUS) (Wang & Shen, 2014). Cor-

rect prediction of susceptibility variants can foster the identification

of molecular pathways causative of human diseases, particularly when

variants affect well-understood genes previously validated by func-

tional studies (Manolio, 2010). Since 2010, the Critical Assessment of

Genome Interpretation (CAGI) experiment tries to objectively assess

the state of the art of computational tools developed for genotype–

phenotype determination. Here, we present a critical assessment of

pathogenicity predictors applied to variants from the CDKN2A (MIM#

600160) tumor suppressor, also known as p16. CDKN2A is the major

susceptibility gene identified in familial malignant melanoma. Approx-

imately 40% of melanoma-prone families worldwide have CDKN2A

germline variants (Hussussian et al., 1994). The CDKN2A locus

maps to chromosome 9p21 and its regulation is particularly com-

plex, involving alternative promoters, splicing, and reading frames of

shared coding regions. Two structurally unrelated tumor suppres-

sors, p16INK4a and p14ARF, involved in cell cycle regulation, are

coded by alternative splicing of different first exons (1-𝛼 and 1-

𝛽). p16INK4a is a cyclin-dependent kinase (CDK4/6) inhibitor and

p14ARF acts in TP53 stabilization, binding, and sequestering the

MDM2 proto-oncogene (Serrano, Hannon, & Beach, 1993; Zhang,

Xiong, & Yarbrough, 1998). Thus, alterations of this single locus com-

promises two important tumor-suppressor pathways at the same time

(Andreotti et al., 2016; Aoude, Wadt, Pritchard, & Hayward, 2015).

When associated with D-type cyclins, CDK4/6 promotes cell cycle

progression through the G1 phase by contributing to the phosphory-

lation and functional inactivation of retinoblastoma-associated pro-

tein (Sherr, 1994; Weinberg, 1995). Structurally, p16INK4a consists

of four repeated ankyrin-type motifs, composed of two antiparal-

lel helices and a loop forming the CDK4/6-binding interface (Fig. 1).

In the context of pathogenicity prediction, the ankyrin fold is chal-

lenging. Ankyrin repeats stack against one another to form a unique

elongated single domain, with a multistate folding pathway confer-

ring high structural plasticity. This highly modular nature confers

unique characteristics such as a high affinity for protein–protein inter-

actions (Tang, Guralnick, Wang, Fersht, & Itzhaki, 1999). However,

stack modularity can also be seen as a gradient of transiently folded

states, where a single amino acid substitution may be able to inter-

rupt p16INK4a-specific periodicity, causing a severe perturbation of

the entire protein structure (Peng, 2004). For this CAGI challenge,
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F IGURE 1 Overview of CDK6-P16INK4A tumor-suppressor complex. Cartoon representations of the p16INK4a 3D structure (PDB code 1BI7)
colored blue, whereas CDK6 is presented as full surface (light gray). Magenta spheres represent positions of variants considered for the chal-
lengemapped on its surface. The ankyrin repeats composing p16INK4a structure are presented belowwith a schematic representation ofmutated
amino acid positions (magenta spots). Variant nomenclature refers to CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4); nucleotide
numbering starts with the A of the ATG translation initiation site.

participants were asked to predict the effect of 10 CDKN2A vari-

ants in the p16-challenge, previously validated in cell proliferation rate

assays. Twenty-two predictions using different strategies, for example,

scoring functions based on sequence conservation, or machine learn-

ing predictors, were assessed. The results allow us to propose where

pathogenicity prediction might be improved, as methods combining

information from different strategies were found to have the most

promising results.

2 METHODS

2.1 Dataset and classifications

The challenge includes 10 nucleotide variants affecting only the

CDKN2A gene-coding region without interfering with p14ARF. Each

variant codes for a single amino acid substitution, with no insertions

or deletions. The variant nomenclature used in this work refers to

CDKN2AmRNA isoform1 (GenBank identifier: NM_000077.4). Partic-

ipants were requested to perform predictions of the cellular prolifera-

tion rate for each of the 10mutant proteins as a percentage of the pro-

liferation rate relative to pathogenic mutants (Table 1). A proliferation

rate of 100% is used for pathogenic variants (positive controls), and

50% for wild-type-like variants (negative controls). Predictors were

also allowed to specify a prediction confidence (standard deviation)

for each variant, with a maximum of six alternative submissions per

group. The standard deviation was only reported for 14 submissions,

and the same confidence value was used for all predictions in five

submissions. In a few cases, predictions have been manually rescaled

during assessment as proliferation levels were wrongly reported as a

fraction of 1 rather than 100 (where 100 represents the 100% posi-

TABLE 1 p16INK4a proliferation rate test set

Proliferation rate

Nucleotide variant Protein variant Average
Standard
deviation

c.67G>A p.Gly23Ser 0.69 0.04

c.67G>C p.Gly23Arg 0.91 0.14

c.67G>T p.Gly23Cys 0.86 0.13

c.68G>C p.Gly23Ala 0.53 0.09

c.68G>T p.Gly23Val 0.90 0.1

c.103G>A; c.103G>C p.Gly35Arg 0.53 0.02

c.103G>T p.Gly35Trp 0.86 0.09

c.104G>A p.Gly35Glu 0.60 0.11

c.194T>C p.Leu65Pro 0.66 0.1

c.281T>C p.Leu94Pro 0.93 0.13

Identifiers of variants affecting cell proliferation and relative proliferation
level. Variant nomenclature refers to CDKN2A mRNA isoform1 (GenBank
identifier: NM_000077.4); nucleotide numbering starts with the A of the
ATG translation initiation site. Proliferation levels were rescaled between
0.5 (wild-type-like phenotypes) and 1 (tumor-like phenotypes).

tive control proliferation rate). A training set composed of 19CDKN2A

variants from Kannengiesser et al. (2009) and Miller et al. (2011) was

also provided to the participants for training (Supp. Table S1). This

choice was justified based on the similar use of bioinformatics tools

to predict CDKN2A variant effects on cell proliferation as verified by

experimental assays. Bioinformatics predictions were described to be

comparable with verified real values for most variants (Kannengiesser

et al., 2009; Miller et al., 2011). Real proliferation levels obtained from

the literature were rescaled between 0.5 and 1 (proliferation level of

wild-type and disease-like phenotypes, respectively).
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2.2 In vitro proliferation assay of CDKN2A variants

and data normalization

The experimental validation of the pathogenic effect of the variants

used in CAGI is described in detail in Scaini et al. (2014). Briefly,

the full-length CDKN2A cDNA was cloned in the pcDNATM3.1

D/V5-His-TOPO R©_expression vector (Invitrogen, Life Technologies

Corporation, Carlsbad, CA), engineered by site-specific mutagenesis

(QuikChange R© II XL Site-Directed Mutagenesis Kit; Stratagene, CA),

and finally transfected inU2-OShumanosteosarcoma cells (p16INK4a

and ARF null, p53 and pRb wild type), as previously described (Scaini

et al., 2009; Scaini et al., 2014). Three controls, no vector (G418

selection control), pcDNA3.1–EGFP (positive, variant-like control),

and pcDNA3.1–p16INK4a wild type (negative control), were included

in each experiment. All variants were independently tested at least

three times. The proliferation rate was calculated as a percentage of

the proliferation of variant-transfected cells (average of all replicates)

at day 8 relative to the proliferation of EGFP-transfected cells, which

was set as 100%. Transfection with wild-type CDKN2A induced a

detectable, substantial growth inhibition (proliferation rate 50%),

whereas various p16INK4a variants had different effects on cell

proliferation, fromwild-type-like to loss-of-function. The proliferation

rates used for CAGI are shown in Table 1.

2.3 Performance assessment

Evaluating the performance of bioinformatics tools in predicting VUS

impact is a non-trivial task. The assessment should not be seen as a

mere discrimination of winners/losers, but rather aim at identifying

which tool generated themost reliable prediction.A considerable num-

ber of performance measures were considered in order to perform a

thorough assessment. The final goal was to generate a global overview

of the strengths and weaknesses of each method. Correlation indices

were considered first, as predictions are in a continuous range (cell

proliferation rate). Both the Pearson correlation coefficient (PCC)

and Kendall’s Tau correlation coefficient (KCC) were calculated. Both

range from +1 (perfect positive correlation) to −1 (perfect inverse

correlation) with 0 representing a random performance. Root mean

square error (RMSE) was calculated to better estimate the difference

between predicted and real values. To further assess the prediction

reliability in a medical setting, a binary classification was used. Pro-

liferation levels were divided in two classes, benign and pathogenic,

with three different proliferation thresholds suggested by the data

provider, that is, potentially pathogenic (>65%), probably pathogenic

(>75%), and likely pathogenic (>90%). The area under the ROC curve

(AUC) for each classification threshold was also calculated. The stan-

dard deviation of the predicted proliferation ratewas used to calculate

the fraction of predictions within standard deviation (PWSD). To

address the issue related to missing and very large confidence range,

PWSD was calculated assuming a standard deviation of 10% for all

submissions (PSWD10). The performance indices used in ranking are

shown in Table 3, and additional performance measures at different

thresholds can be found in Supp. Table S3. An overall ranking of

predictors’ performancewas defined as average ranking of four quality

measures. All measures are defined in more detail in the Supp. Mate-

rial. To assess the statistical significance of each performance index,

10,000 random predictions were generated and used to calculate an

empirical continuous probability (score s), with a P value defining the

proportionof randompredictions scoring> s. TheR scripts used toper-

form the assessment are publicly available from theGitHub repository

at URL: https://github.com/BioComputingUP/CAGI-p16-assessment.

3 RESULTS

3.1 Participation and similarity between predictions

In the p16INK4a CAGI challenge, participants were requested to pre-

dict the effects of 10 p16INK4a VUS potentially causing malignant

proliferation validated with cellular proliferation assays (Scaini et al.,

2014). This challenge attracted 22 submissions from 10 participating

groups, which were assessed without knowing the identity of the pre-

dictors. After the assessmentwas completed, only one group remained

anonymous. Table 2 lists the participating groups, their submission IDs,

and main features used for prediction. The majority of methods used

evolutionary information derived from multiple-sequence alignments

for prediction. Several methods also used the available crystal struc-

ture of p16INK4a bound to CDK6 (see Fig. 1) to calculate folding ener-

gies. Combinations of both approaches or of different predictors were

also submitted. A summary for each method is described in the Supp.

Material. Of the 10 participating groups, four contributed one predic-

tion, one submitted two, four submitted three, and only one group sub-

mitted four different submissions.

An analysis of prediction similarity was performed to better high-

light the peculiarity of each submission (see Suppl. Fig. S1 for the full

dataset). Almost all groups performing multiple submissions made

very similar predictions (see Fig. 2). This is particularly evident for

the Bromberg group, which were de facto mostly identical for many

variants. A similar situation can be drawn for the Moult group, where

a different fitting of two linear models (submissions 9, 15) produced

identical predictions for most variants. A different rescaling process

of submission 15 defined the third prediction (submission 20). Sub-

missions 9 and 15 both predicted a majority of variants between 0.88

and 1. Predictions from the Gough and BioFolD groups are also quite

strongly correlated among each other. Interestingly, submissions 5 and

3 (BioFolD and Casadio lab, respectively) are also highly correlated as

both are based on two versions of the SNPs&GO method (Calabrese,

Capriotti, Fariselli, Martelli, & Casadio, 2009; Capriotti et al., 2013).

The Vihinen lab (submissions 6, 13) presents a weak anticorrelation

among its predictions, probably due to predictions for all except one

variant being very high (≥0.85). The four submissions fromYang&Zhou

lab (10, 16, 21, 22) present almost no correlation, possibly also due to

a sign error affecting three submissions.

3.2 Assessment criteria and performancemeasures

The type of insights to be gained from assessing a CAGI challenge

depends strongly on the criteria used for evaluation. As this is a rela-

tively novel field, extra care was given to this point. Ideally, the crite-

ria should reflect the true performance of the methods, highlighting

https://github.com/BioComputingUP/CAGI-p16-assessment


CARRARO ET AL. 5

TABLE 2 Predictor overview

Submission ID Group ID Prediction features

Submission 1 Anonymous /

Submission 2 Bromberg lab Conservation, annotation

Submission 3 Casadio lab Conservation, gene ontology

Submission 4 Lichtarge lab Conservation

Submission 5 BioFolD lab Conservation, gene ontology

Submission 6 Vihinen lab Metapredictor

Submission 7 Dunbrack lab Protein structure

Submission 8 Gough lab Conservation

Submission 9 Moult lab Metaprediction

Submission 10 Yang&Zhou lab Conservation, folding energy

Submission 11 Bromberg lab Conservation, annotation

Submission 12 BioFolD lab Conservation, gene ontology

Submission 13 Vihinen lab Conservation, amino acid features, gene ontology

Submission 14 Gough lab Conservation

Submission 15 Moult lab Metaprediction

Submission 16 Yang&Zhou lab Conservation

Submission 17 Bromberg lab Conservation, annotation

Submission 18 BioFolD lab Metaprediction

Submission 19 Gough lab Conservation

Submission 20 Moult lab Metaprediction

Submission 21 Yang&Zhou lab Folding energy

Submission 22 Yang&Zhou lab Folding energy

For each submission, predictor and a summary of features used for prediction are indicated.

F IGURE 2 Correlation among submissions. Each cell shows the Pearson correlation coefficient between two submissions, with a color scale
ranging from green (+1, perfect correlation) to red (0, no correlation) and black (−1, perfect anticorrelation). Submissions are clustered by group.

submissions that are of practical relevance. The simplest measures,

binary classification and derived measures such as AUC, suffer from

the choice of an arbitrary threshold, which may obfuscate interesting

results. Correlation measures are good to indicate overall trends, but

of little use to guide the selection of pathogenic cases as no threshold is

used.At theothernumerical extreme,RMSE is very clear, but can result

in poor performance for all submissions. For an inherently continuous

prediction challenge such as p16, determining the number of predic-

tionswithin a fixeddistance can arguably provide ameasure combining

features of binary classification and correlation. In order to understand
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F IGURE 3 Correlation among performance indices. Each cell shows
the Kendall correlation coefficient between the two corresponding
measures, with a color scale ranging from green (+1, perfect correla-
tion) to red (−1, perfect anticorrelation). Notice how similar measures
tend to cluster together. The four selectedmeasures are highlighted in
bold face.

better how related the assessment criteria are among each other, their

correlation was plotted (Fig. 3). The PCC and KCC correlation coeffi-

cients are highly correlated with each other and with the three AUC

measures. RMSE and two PWSD variants are less correlated and offer

two alternative views of the data.

Using a reduced set of measures for the final ranking is suggested

by the high pairwise correlation coefficients, suggesting they are mea-

suring very similar features (see Fig. 3). A ranking including largely

orthogonal measures should prove more robust and informative. For

this reason, only four measures (one for each group) with low pair-

wise correlation were considered for the final ranking, that is, KCC,

RMSE, AUC considering a 75% of proliferation threshold (AUC75),

and PWSD considering a standard deviation of 10% for all submission

(PWSD10). In particular, KCCwas chosen as it is a rank-basedmeasure

appropriate when targets are continuous and their relative order is

critical. The data provider recommended to use AUC75, as the corre-

sponding proliferation level appeared to be the best threshold to sep-

arate pathogenic and neutral phenotypes. Finally, PSWD10 was pre-

ferred over PSWD as many predictors did not report standard devia-

tion for their submissions.

3.3 Performance evaluation

The assessment of performance achieved by the 22 methods showed

many predictions to have good results on average. This is particularly

TABLE 3 Performance indices

Submission PCC KCC RMSE AUC65 AUC75 AUC90 PWSD PWSD10

S1 0.83 0.45 23.51 0.81 1 0.76 5 3

S2 0.33 0.02 21.29 0.57 0.62 0.55 3 2

S3 0.53 0.47 25.5 0.83 0.7 0.64 2 2

S4 0.84 0.63 16.48 0.81 1 1 4 5

S5 0.66 0.6 15.81 0.9 0.88 0.9 7 6

S6 0.23 0.34 25.67 0.57 0.58 0.79 2 3

S7 0.22 0.2 18.2 0.57 0.68 0.62 3 4

S8 −0.34 −0.4 39.21 0.19 0.42 0.26 1 1

S9 0.7 0.38 20.18 0.86 0.88 0.71 3 3

S10 0.83 0.69 9.24 1 0.92 1 7 7

S11 0.33 0.02 21.29 0.57 0.62 0.55 2 2

S12 0.57 0.47 15.93 0.67 0.84 0.9 4 6

S13 0.11 0.05 20.08 0.57 0.42 0.64 5 5

S14 −0.22 −0.4 23.29 0.19 0.42 0.26 5 5

S15 0.76 0.51 18.83 0.86 0.96 0.81 4 3

S16 −0.45 −0.56 22.48 0.12 0.08 0.14 2 2

S17 0.43 0.25 21.8 0.67 0.72 0.57 2 2

S18 0.46 0.28 16.35 0.67 0.72 0.76 6 2

S19 0.3 0.07 20.3 0.45 0.76 0.55 2 3

S20 0.76 0.51 17.7 0.86 0.96 0.81 4 4

S21 −0.62 −0.6 23.71 0.19 0.12 0 2 2

S22 0.15 0.2 18.45 0.6 0.4 0.76 3 3

Results are shown for themain performance indices considered in the assessment.
The top performing submission in each category is shown in bold and the second best is underlined.
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true considering AUC75, where most of the submissions achieved

values between 0.7 and 1. For KCC, the average of the submissions

shows a moderate to strong correlation with real data (see Table 3).

Good results were however not sufficient for most predictions to be

statistically significant. Very demanding thresholds emerged to sep-

arate significant results from random for this challenge, with only the

top rankingmethodsbeing significant formost of the four performance

indices (see below). This is probably due to the limited number of vari-

ants present in the test set, wherewrong prediction of one variant cor-

responds to 10% of the dataset. Small variations in predictions could

be reflected in remarkable fluctuation of performance indices due to

the small number of variants considered. To perform a global assess-

ment of predictor performance,we therefore decided to focusmore on

ranking than on numerical values achieved for each measure. Ranking

variations not only may better reflect the magnitude of performance

variation, but can also be considered more intuitive for nonspecialist

readers. The Yang&Zhou lab (submission 10) performed best, ranking

first in all performance indices except AUC75, where it is fifth (see

Table 4). The Lichtarge lab (submission 4), an anonymous prediction

(submission 1), and theMoult lab (submissions 15, 20) obtained higher

AUC75 values. The Lichtarge lab also obtained good results consider-

ing KCC, where it ranked second. BioFolD (submission 5) also achieved

good results, ranking second forbothPSWD10andRMSDand third for

KCC. Furthermore, the BioFolD lab also performed well with submis-

sion 12, being second and third for PSWD10 and RMSD, respectively.

Among the lower ranked predictions, an inverse correlation is found

for submission 8 (−0.40), mainly resulting from low proliferation levels

being predicted when real proliferation levels were high. Submissions

16 and 21 rank poorly, achieving an inverse KCC correlation (−0.56,
−0.6). Notably, while all three submissions perform poorly, they

probably followed opposed strategies. Submission 8 tends to be very

conservative, with most of the predicted values close to a wild-type

phenotype. Submissions 16 and 21 tend to be more biased toward the

prediction of malignant phenotypes, with only one predicted value

close to a milder phenotype. This trend seems to be shared among

lower ranking predictions.

A statistical test of the average ranking over all four performance

measures confirmed submission 10 (Yang&Zhou lab) as the best per-

former.No statistically significant difference canbe identifiedbetween

submissions 4 and 5 (Lichtarge, BioFolD; see Fig. 4) ranked second

and third, respectively. A bootstrap simulation with 10,000 replicas

was used to test whether the performance achieved by the three best

submissions could be achievedby chance. Submission10performsbet-

ter than random (P value < 0.05) for three out of four measures, the

only exception being PSWD10. Submissions 4 and 5 perform better

than random only considering KCC and AUC75 (see Table 5).

TABLE 4 Submission ranking

Rank

Submission KCC RMSE AUC75 PWSD10 Average Overall

S1 8 18 1 9 9 8

S2 17 13 14 15 14.75 18

S3 6 20 12 15 13.25 15

S4 2 5 1 4 3 2

S5 3 2 6 2 3.25 3

S6 10 21 16 9 14 16

S7 14 7 13 7 10.25 10

S8 19 22 17 22 20 22

S9 9 11 6 9 8.75 7

S10 1 1 5 1 2 1

S11 17 13 14 15 14.75 18

S12 7 3 8 2 5 4

S13 16 10 17 4 11.75 12

S14 19 17 17 4 14.25 17

S15 4 9 3 9 6.25 6

S16 21 16 22 15 18.5 20

S17 12 15 10 15 13 14

S18 11 4 10 15 10 9

S19 15 12 9 9 11.25 11

S20 4 6 3 7 5 4

S21 22 19 21 15 19.25 21

S22 13 8 20 9 12.5 13

Ranking of the different predictionmethods based on performance indices in Table 1. To define the final ranking, average of ranking position for each perfor-
mance index was used.
The top performing submission in each category is shown as bold, whereas underlined is for the second best performance.
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F IGURE 4 Pairwise difference between submissions. Statistical dif-
ferences between submissions based on the overall ranking achieved
by each submission, sorted according to the final ranking. White
squares are indices of tied predictions (P values > 0.05) meaning that
performances are similar and the difference between two predictors is
not statistically significant.

TABLE 5 Statistical significance test for top three submissions

S10 S4 S5

KCC 0.015 0.015 0.015

AUC75 0.029 0.004 0.048

RMSE 0.006 0.222 0.151

PWSD10 0.059 0.389 0.183

The P value for random predictions scoring better using each assessment
metric is shown over 10,000 simulations.
P values< 0.05 are shown as bold.

3.4 Difficult variants

An analysis of submissions shows prediction reliability to depend

on position, with p.Gly23Ser, p.Gly35Glu, and p.Gly35Arg being par-

ticularly complex to address (see Supp. Table S2). p.Gly23Ser and

p.Gly35Arg are the most mispredicted variants using PWSD10, with

only two correct predictions. Both variants affect conserved posi-

tions that are known to have role in correct p16INK4a folding and

CDK inhibition. A previous study (Scaini et al., 2014) addressing the

same genetic changes showed p.Gly23Ser to introduce a weak inter-

action with S56. Although weak, this is thought to stabilize the overall

fold, inducing a small local rearrangement of the p16-CDK4/6-binding

interface. Predictions seem tomiss this twofold effect. The p.Gly23Ser

variant is mainly predicted as damaging, suggesting that currentmeth-

ods overpredict a pathogenic effect. A similar scenario can be seen

for p.Gly35Glu and p.Gly35Arg. The G35 is a solvent-exposed residue,

which localizes at theendof thefirst𝛼-helix in thep16INK4a structure.

Substitution of G35 with charged residues can be accommodated in

the ankyrin fold, likely yielding neutral phenotypes (Scaini et al., 2014)

mispredicted in this case. The only notable exception is submission 20,

which shows the best accuracy with these difficult variants but misses

most of the other variants. The p16INK4a challenge shows how dif-

ferent variants on the same residue can have widely diverging effects,

which are not well predicted bymany submissions.

4 DISCUSSION

Pathogenicity prediction of VUS is a challenging problem. It can man-

ifest at different levels, such as protein function, subcellular local-

ization, and pathways, as well as impairing multiple interactions a

specific protein can exert with different partners (Hamp & Rost,

2012). Pathogenicity predictions are frequently performed through

a priori knowledge of the biological problem, in most cases from an

experimental characterization of disease-associated variants. In sil-

ico prediction can be considered a realistic benchmark of our under-

standing of these biological problems. Here, we presented results

from the critical assessment of 22 different predictions in the CAGI

p16INK4a challenge. Different submissions were compared to high-

light the strengths and weaknesses of prediction strategies as applied

to the human tumor-suppressor p16INK4a. The challenge had sev-

eral peculiar characteristics. p16INK4a is a cancer-associated kinase

inhibitor whose main function is protein–protein binding. It is also an

ankyrin repeat protein, characterized by repetitive local short-range

interactions (Peng, 2004; Scaini et al., 2014). In an ideal scenario, a

reliable pathogenicity predictor should discriminate variations affect-

ing both p16INK4a features. From a computational point of view,most

predictors use position-specific scoring matrices (PSSM) and machine

learning. The assessment suggests that our knowledge is sufficient to

perform reliable predictions for the analyzed variants. However, rele-

vant differences emerged among predictions. These differences stem

in part from the strategy used for pathogenicity assessment. Others

arise from expert knowledge, with similar approaches generating dis-

cordant predictions. Groups combining different strategies seemmore

robust when predicting CDKN2A variants. Predictions supplied from

the Yang&Zhou lab are emblematic of this phenomenon. This group

contributed four different submissions, rescaling PSSM value differ-

ences between wild type and variants, computing ΔΔG variation with

ROSETTA3 (Dimaio, Leaver-Fay, Bradley, Baker, & André, 2011), com-

putingΔΔGwithDmutant (Zhou&Zhou, 2002) or combining them in a

support vector machine using a linear kernel. Our assessment showed

the Yang&Zhou lab reliability improving with prediction complexity

(see Tables 3 and 4), peaking with the most complex submission 10.

A similar reliability gradient was observed for other groups using dif-

ferent strategies, suggesting how a single method may be insufficient

for pathogenicity prediction. Submission 10 presents the best fit with

experimental data. On the other hand, a suboptimal AUC75 suggests

the submission is less convenient for discriminating pathogenic from a

wild-type-like phenotype. Conversely, submission 4 (Lichtarge group)

presents the best AUC75 value, which may make it useful in a clini-

cal setting. However, submission 4 predicts all variants as pathogenic

at this threshold, which renders this method unreliable for clinical

practice. Prediction performance seems to be also influenced by vari-

ant type. For example, variants affecting glycine 35 are on average

easier to predict than glycine 23. The latter is known to be relevant

for the correct ankyrin fold (Peng, 2004), as well as to localize at the
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p16INK4a/CDK4/6-binding interface (Miller et al., 2011; Scaini et al.,

2014). For ageneric pathogenicitypredictor, thismaybe theworst case

scenario. Sequence conservation analysis highlights the residueas con-

served and relevant for protein structure, butmaymiss the pathogenic

effect caused by interference at the protein–protein interaction inter-

face. More advanced approaches, such as HMMs and neural networks,

turned out to be the best strategies for this specific problem. It can be

argued that the limited number of variants composing the dataset may

limit generalization of the results and a larger set of variantsmight pro-

duce a different ranking. The dataset was chosen to represent a bal-

anced ratio between pathogenic and neutral variants. Despite these

intrinsic limitations, we believe this challengemay be representative of

a clinical setting, where disease-associated genes are poorly described

when it comes to variants found in patients. It is evident from the

assessment that no method is able to perform errorless predictions.

We expect the CAGI results to provide a starting point to improve the

availablemethods and encourage using the scripts available onGitHub

to help standardize the assessment.
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